

COPPER SFP MODEL: GLC-T

Product description

The ZHT industry-standard 1000BASE-T Small Form-factor Pluggable (SFP) gigabit interface converter (GBIC) is a hot-swappable input/output device that plugs into a Gigabit Ethernet port or slot, linking the port with the network. The ZHT SFP provides full-duplex Gigabit Ethernet connectivity to high-end workstations and between wiring closets over existing copper network infrastructure

GLC-T

1000Base-T SFP RJ45 100m optical transceiver High quality with ISO9001, TUV, CE, FCC, UL and R_0HS certificates Manufacturer: ZHT Compatibility: Fully compatible with Cisco

Feature

- Up to 1.25Gb/s bi-directional data links
- Hot-pluggable SFP footprint
- Compact RJ-45 connector assembly
- Extended case temperature range (0°C to +70°C) Fully metallic enclosure for low EMI
- Low power dissipation
- Access to physical layer IC via 2-wire serial bus
- 100 BASE-T and 1000 BASE-T operation in host systems with SERDES interface
- 10/100/1000Mbps compliant in host systems with SGMII interface
- Operating case temperature range :0 ~ +70° C

Absolute Maximum Ratings

Table 1- Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Voltage	Vcc	-0.5	-	+3.6	V	
Storage Temperature	TS	-40	-	85	°C	
Operating CaseTemperature	Тс	0	-	70	°C	
Operating Relative Humidity	RH	+5	-	+95	%	

Recommended Operating Conditions

Table 2- Recommended	l operating	Conditions
----------------------	-------------	------------

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Operating Case Temperature	тс	0	-	70	°C	
Power Supply Voltage	VCC	3.14	3.3	3.46	V	
Power Supply Current	ICC	-	-	370	mA	
Power Dissipation	PD	-	-	1.2	W	
Data Rate		-	-	1250	Mbps	
Cable Length		1	100	-	М	

Low Speed Signal Electrical Characteristics

Table 3- Low Speed Signal Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
SFP output high	VOH	2.0	-	VCC+0.5	V	
SFP output low	VOL	GND	-	GND+0.8	V	
SFP input high	VIH	2.0	-	VCC+0.5	V	
SFP input low	VIL	GND	-	GND+0.8	V	

High Speed Signal Electrical Characteristics

Table 4- High Speed Signal Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Line Frequency	FL	-	125	-	MHZ	1
Single ended data input swing	Vin	500		1150	mV	
Single ended data output swing	Vout	500		1050	mV	
Tx Output Impedance	Zout,TX	-	100	-	ohm	2
Rx Input Impedance	Zin,RX	-	100	-	ohm	2
Rise/Fall Time	Tr,Tf	100	-	200	ps	3
Tx Input Impedance	Zin		100	-	ohm	2
Rx Output Impedance	Zout	-	100	-	ohm	2

Note:

- 5-level encoding, per IEEE 802.3. differential impedance Vod rise/fall time (20%-80%). 1.
- 2.
- 3.

Pin arrangement

Figure 1, Pin View

Table 5-Pin Function Definitions

Pin	Name	FUNCTION	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	1
3	TX Disable	Transmitter Disable	3	2
4	MOD-DEF2	Module Definition 2	3	3
5	MOD-DEF1	Module Definition 1	3	3
6	MOD-DEF0	Module Definition 0	3	3
7	Rate Select	Not Connect	3	
8	LOS	Loss of Signal	3	4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	
13	RD+	Received Data Out	3	
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	3.3V ± 5%

16	VccT	Transmitter Power	2	3.3V ± 5%
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	
19	TD-	Inv. Transmit Data In	3	
20	VeeT	Transmitter Ground	1	

Note:

- 1. TX Fault not supported and is always connected to ground
- 2. TX Disable is an input used to reset the transceiver module. It is pulled up within the module with a 4.7~ 10K resistor.
 - Low (0- 0.8V): Between (0.8V and 2V): High (2.0 – VccT): Open:

Transceiver on Undefined Transceiver Rest state

Transceiver Rest state

- MOD-DEF 0, 1, 2. These are the module definition pins. They should be pulled up with a 4.7~10K resistor on the host board to supply less than VccT+0.3V or VccR+0.3V. MOD-DEF 0 is grounded by the module to indicate that the module is present.
 - MOD-DEF 1 is clock line of two wire serial interface for optional serial ID. MOD-DEF 2 is data line of two wire serial interface for optional serial ID.
- LOS (Loss of signal) is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation.

```
5.
```

Mechanical Diagram

Figure 2, mechanical diagram

Ordering information

Table 6 Ordering information

Part number	Operating Case temperature
GLC-T	1000Mbps only, SERDES interface, Copper SFP with spring latch

Notice

Gigac reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Gigac makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Due to continuous improvement, all products specifications are subject to change without further notice. Contact us for custom requirements. E-mail: Sales@zhtelecomm.com Website: www.zhtelecomm.com Tel: +86-01081593787 Fax: +86-01081593789